<img src="https://secure.leadforensics.com/124134.png" style="display:none;">

Karl Fisher Titration and the 20 Most Critical Questions

By Hank Levi on Sun, Jun 12, 2011 @ 12:27 PM

questionsAs a service provider of Karl Fisher testing apparatus, we see different moisture testing issues that many operators, managers, and even companies face. We have come to realize that helping operators become more knowledgeable about "the little things" can help boost confidence, improve performance and efficiency, and ensure accurate testing. 

Are you new to Karl Fisher Titration and just beginning to learn about moisture testing or has it just been a while since you had to pull the Karl Fisher Titrator out to run some tests?  Regardless of your reason we know how important it is to get up to speed quickly so you can be running tests and providing moisture test results to those who need them.

Learn more about Karl Fischer Titration

To help with this we have compiled a list of the 20 most critical questions to help operators navigate through the learning curve and gain a better understanding of Karl Fisher Titration.

Some examples of issues you will discover include:

1.  "Our Karl Fisher says 'OVER TITRATION' and the reagent is turning really dark. Why?”

2.  “Why won’t the instrument go into “Ready mode”?”

3.  “Results seem "all over the place", what should I do?”

4.  "We use a solids evaporator and we are getting ZERO moisture results. Why?"

5.  "How many tests can I run and when should I change out my reagents?"

 Find more Coulometric Karl Fischer Titrator information 

Avoid unnecessary surprises by getting a copy of the complete list of questions and learn what the issues are and why they are important.

Created on 06/11/11 at 08:00:22

Learn more about Volumetric Karl Fischer Titration

Continue Reading

Here are 6 Advantages Karl Fischer Titration offers when measuring moisture

By Hank Levi on Thu, Jun 02, 2011 @ 11:12 AM

Karl FisherThere are multiple methods of moisture determination, including loss on drying, Karl Fischer titration, piezoelectric sorption, spectroscopy, and chilled mirrors among others. However, it is advantageous to use Karl Fischer (KF) titration in moisture analysis for the following reasons:

 

 

  1. It is highly accurate and precise (Part Per Million Accuracy).
  2. KF is specific to water determination. This specification is different from the other popular moisture analysis method, loss on drying (LOD), because LOD can detect the loss of any volatile substance. However, this specification is advantageous because it allows KF titration to work independent from volatile substances present in the sample
  3. The process does not require large samples, which is typically truer with Loss on Drying where more sample is required to achieve higher accuracy and repeatability - which introduces another entirely different problem.
  4. It does not require much time to perform an analysis since the samples are easy to prepare and the analysis itself is short in duration.
  5. The method has a nearly unlimited measurement range (from 1ppm to 100%).
  6. Karl Fischer titration can determine the moisture content of a sample in any state, whether it is a solid, liquid, or gas.

We hope the above advantages show some of the benefits that Karl Fischer titrators can provide.  Even today with technological advancements Karl Fisher Titration remains very popular not only because of the advantages we mention, but also because it is widely accepted as a standard for moisture detection and measurement.  Learn more about Karl Fischer Titration

Continue Reading

Karl Fischer Titrators; How much reagent do I need?

By Hank Levi on Fri, May 20, 2011 @ 02:48 PM

This is a popular question for most operators using a coulometricKarl Fisher Reagents Karl Fischer titrator.  So let's get started.  There are two things to consider.  First, you have the chemical limitations of the reagents themselves.  Second, you have the user/operator variable. Sometimes changing the reagent has more to do with the condition of the reagent sitting in the vessel.  How full is the vessel after running numerous test? How long has the reagent been sitting in the vessel? How messy is the reagent and sample residue inside the vessel? Sometimes the user may simply want to replace the reagents because they look dirty/messy or their vessel is too full from adding samples during previous tests.

Setting aside those factors just mentioned, if we look at the reagents themselves and their capacity to measure moisture, we can come up with a general guideline as follows:

Note:  This example describes a Coulometric Karl Fischer Titrator with dual reagent setup (using Anolyte and Catholyte)

1.  In general and with regard to reagent brand, 100mL of Anolyte (AKA Anode- the reagent used in the vessel) reagent analyzes up to 1gram (1 million micro grams) of water.  20mL of Catholyte (AKA Cathode- the reagent used in the generator electrode/inner buret) reagent analyzes up to 1gram (1 million micro grams) of water.  The relationship according to the amount of water each reagent can analyze has a relationship of 100mL Anolyte to 20mL Catholyte – a 20% relationship of catholyte to anolyte.

2.  Anolyte is commonly purchased in 500ml bottles, Catholyte is commonly purchased in10x5mL ampules.

3.  A typical coulometric Karl Fischer titrator Vessel is charged with 75mL of anolyte and 1ea 5mL catholyte ampule.  Based on the 20% relationship it says that 3x5mL catholyte ampules would be used with each 75mL vessel charge of Anolyte.

4.  A 500mL bottle of Anolyte can charge the Coulometric Karl Fischer titrator vessel 6.6 times (round to 6 times to account for spillage).  3x5mL Catholyte ampules per charge of the vessel times 6 charges of the vessel = 18x5mL catholyte ampules.

Typically users do not expire the entire useful life of the reagents moisture measuring capability because of some of the factors I mentioned initially.  Another factor that I have to mention is that ambient moisture will require the coulometric Karl Fischer Titrator to maintain a dry vessel.  This process of keeping or getting the vessel in a ready to go mode can use some of the reagents useful life.  e.g. it’s not counting the moisture in your samples but that of the outside ambient moisture – for the most part this should be a small amount, but something to keep in mind and know about.

Learn more about Karl Fischer Titration

So, with all of this information, the question you may have is how long will my reagents last?  Well, that depends.  But, if you want to continue using the math we have already discussed, then, 1 charge of the vessel (75mL of anolyte with 3x5mL catholyte ampules) can measure 750,000 micro grams of water.

And, for those of you who think in Parts Per Million (PPM) you can translate into the  following:

PPM = micro grams of H2O detected / Your Sample Size (in grams)

Continue Reading

Recent Posts