<img src="https://secure.leadforensics.com/124134.png" style="display:none;">

Hank Levi


Recent Posts

How-To set up and run acid & salt titrations

By Hank Levi on Tue, Jun 08, 2021 @ 02:51 PM

This article is not intended to explain a manual titration process but rather how you can configure an automatic titration system to run both acid and salt titrations independently and or as a combined method.

Performing acid and salt titrations is a popular requirement in the food industry.  Some foods like tomatoes for example tend to have naturally occurring acidic properties but also take on a salt component when processed into other intermediary products like pizza sauce or spaghetti sauce.  

Although sodium (Na) is an important element to measure and report on food labels, salt (NaCl) content is also important in measuring to ensure the taste is good and repeatable during the production process.

Performing titrations whether manually or with the use of an automatic titrator involves a burette where specific amounts of titrant are delivered to evaluate the potential and or content of what is being measured. Results are usually reported in % for both acidity and salt content.

Here is an example of how you might set up a titration for testing both acidity and salt.  Below we have 2 scenarios.  The first scenario is configured so that the titration for both acidity and salt can be performed using a single sample.  To accomplish this you will need 3 burettes.  We will first perform the acidity titration using burette #1 with NaOH (Sodium Hydroxide) as our titrant.  In our example, during the acidity titration, the pH will rise to about 8.2.  At the end of the acidity titration, the pH level will be too high for us to run the salt titration so we will need to lower the pH.  We accomplish this task by dosing HNO3 (Nitric Acid) into the sample using the burette on the Automatic Piston Burette (APB ~ we will call this burette #3).  We will dose HNO3 to reduce the pH down to about 4.1.  Once the pH level is reduced the salt titration can begin.  The second burette (burette #2) located on the titrator then performs the salt titration using silver nitrate (AgNO3) as the titrant.  It is worth noting that silver nitrate comes in various strengths and so depending on your sample and the amount of "salt" you expect to find, you may need to adjust the strength (1.0N vs. 0.5N vs 0.1N, etc).

What the setup will look like

Salt and Acid drawing.jpg

Electrodes we will use:

  • pH glass electrode (noted as H171 in the diagram)
  • combined silver electrode (noted as C373 in the diagram)

When running the titration using only one sample to obtain both the acidity % and the salt %, we will use both electrodes as the combined silver electrode will act as a reference electrode for the pH electrode. 

When running a single titration on two different samples in two different beakers, leave both electrodes and nozzles in the samples ensuring to clean the nozzles and electrodes between tests of each sample.  In this scenario, the combined silver electrode (C373) will also work as a reference electrode for the pH electrode (H171) while running the acidity titration.


Summary of key consumable:
  • Silver Nitrate (AgNO3) titrant for salt titrations
  • Sodium Hydroxide (NaOH) titrant for acidity titrations
  • Nitric Acid (HNO3) buffer if combining methods
  • Combined Silver Electrode (C373) for salt titrations
  • pH glass electrode (H171) for acidity titrations

In the video below we show the titration setup described above.

 

 

We hope you find this information useful!

                                                    Ask for more information

 

 


 

Continue Reading

Introducing our technical Web Helpers!

By Hank Levi on Mon, Nov 23, 2020 @ 01:58 PM

Hello!  Please meet our new Web Helpers!  Moisture Elle, Karl Fischer, Shaker Sam, Terri Tenso, and Vivian Visco!  Each of our helpers will provide technical information ranging from general topics to more in-depth discussion pertaining to; Moisture testing, Karl Fischer Titration, Particle Size Analysis, Surface Tension, and Viscosity.

 

Introduction To Web Helpers

 

Continue Reading

DA-130N Portable Density Meter Review

By Hank Levi on Tue, Sep 24, 2019 @ 04:17 PM

Watch this video to learn more about the very capable DA-130N Portable Density Meter.

DA-130N Portable Density Meter Review
Continue Reading

How an oil evaporator works with a Karl Fischer Titrator

By Hank Levi on Mon, Aug 26, 2019 @ 11:13 AM

Evaporators configured for use with Karl Fischer moisture testers can provide added benefit when testing for moisture in samples that are not easily solubilized in the titration cell.  In some cases even if it's possible to solubilize the sample in the titration cell you may find that it is better to use an evaporator to improve repeat testing by keeping the cell clean.  While traditonal Karl Fischer moistutre testing is performed using a direct injection method where a syringe and needle is used to introduce the liquid sample into the titration cell, the use of evaporators follow a different approach. 

Within the evaporator family there are SOLIDS EVAPORATORS that can range from 0 to 300 degree C as well as high heat solids evaporators that can range from 0 to 1,000 degree C. 

A typical OIL EVAPORATOR will have a range from 0 to 300 degree C. 

Solids evaporators will typically be used to measure moisture in these types of samples:

  • plastic pellets (pte, etc)
  • plastic parts (you can cut into smaller pieces with a pair of scissors)
  • paper material (transformers)
  • thick grease samples
  • thick petroleum based samples like heavy paints, etc
  • and the list goes on

Oil evaporators will generally be used when working with heavy crude oil samples with high turnover testing (keeping the cell clean).

In this video we will discuss and show how the oil evaporator works with a Karl Fischer Titrator.

 

Talking points include:

  • Karl Fischer Titrator
  • Oil Evaporator
  • Base Oil
  • Bubbler Tube
  • Nitrogen Gas Source
  • Regulator
  • Thermocouple
Continue Reading

The DA-130N portable density meter has twelve measurement modes and includes density of alcohol

By Hank Levi on Mon, Aug 20, 2018 @ 09:20 AM

Hand held density meters are very useful tools.  You can take them with you and perform any of these 12 tasks.

1) Density 5) API 9) Baume
2) Comp. Density 6) Brix 10) Plato
3) SG(t/t) 7) Alcohol 11) Proof
4) SG 8) H2SO4 12) Conc.

 

(1) Measurement of density

(2) Measurement of temperature compensated density

(3) Measurement of specific gravityMeasurement of true specific gravity at displayed measurement temperature

(4) Measurement of specific gravity temperature compensatedMeasurement of true specific gravity at preset temperature

(5) Measurement of API degreeMeasurement of density or API degree compensated in temperature to 15 degree C or 60 degree F for the product group A, B or D.

Selection of temperature, 15 degree C or 60 degree F, will be automatically made when setting the temperature unit. Product group A: Crude oil

[Measurement of density: API A (Density) Product group B: Fuel, Petroleum products

[Measurement of density: API B (Density) Product group D: Lubricant

[Measurement of density: API D (Density)

(6) Measurement of Brix concentration

Measurement of API degree: API A (Degree)] Measurement of API degree: API B (Degree)] Measurement of API degree: API D (Degree)]

Measurement of Brix concentration (sucrose concentration expressed in weight %) based on density at 20 degree C

Get more DA-130N Portable Density Meter Information

(7) Measurement of Alcohol concentration

Measurement of alcohol concentration of Ethanol/Water mixed system in wt % or vol % at 15 degree C or 20 degree C calculated from the density at the measurement temperature. When setting of temperature unit is Fahrenheit

Measurement of alcohol concentration of Ethanol/Water mixed system in wt % or vol % at 60 degree F calculated from the density at the measurement temperature.

(8) Measurement of sulfuric acid concentration

Measurement of sulfuric acid concentration in weight % from density measured at 20 degree C

(9) Measurement of Baume degree

Measurement of Baume degree at converted temperature from density value measured at the measurement temperature

(10) Measurement of Plato degree

Measurement of Plato degree at 20 degree C from density obtained at measurement temperature

(11) Measurement of Proof degree

Measurement of Proof degree at 60 degree F from density obtained at measurement temperature Proof degree is one of the units for alcohol content, and there is US Proof and British Proof

Proof (US) : Measure in US Proof unit (100v/v%=200 US Proof)
Proof (IP) : Measure in UK Proof unit (100v/v%=175 British Proof)

(12) Concentration measurement by setting desired concentration conversion formula

 

Learn more about instruments that measure liquid density

 

Continue Reading

DA-130N portable density meter General Maintenance Guidelines

By Hank Levi on Tue, Jul 31, 2018 @ 03:18 PM

This is a quick guide to getting started and running your first test.  We thought it would be helpful for those getting started and checking their first calibration before running tests with actual samples.  We will also continue to explore and share more information about calibration options, general maintenance, and data export methods using the DA-130N portable density meter.

O.K.  Let's install three 'AAA' batteries to get started.installing the batteries.png

And then attach the sampling nozzle.  attaching the sample nozzle.png


A few words about precautions when taking test measurements.

measurement precautions.png

When measuring a sample make sure to hold the instrument so that the sampling nozzle is vertical to the ground.  When laying down the instrument between or after measurements make sure to drain the remaining sample from the built-in syring (the built-in syringe is located inside the meter right above the sampling nozzle).

 builtinsryring2.png


Now let's run a preliminary test using water.  

Leave the temperature unit (Celsius), measurement unit (g/cm3) and mode (Field) as initial values. Sample pure water using the built-in syringe.  After the measurement cell is filled with sample liquid make sure there are no air bubbles in the cell.  If no air bubbles are visible then let's proceed.
 
Example procedure for running first test.
screen view at current temp before stablized.png
The display changes as above and after confirming it is in the automatic stability sense mode. Press [Meas.] key.  When the displayed density is stabalized the value will automatically change reversed as below.  Read the data at this point as well as the temperature degree.
screen changes reverse when stabalized.png
Look up to the pure water density table (appendix 1 in the manual).  If the results agree within +-0.001g/cm3, you can proceed to making your sample measurements!
 
densityofpurewater.png
 
Note: If the results are not within the acceptable range then the measuring cell requires calibration.
 

Calibration of the measuring cell using pure water

calibrationofmesaruingcell.png

Set calibration mode to OFF.  Press the [esc] key 2 times to return to the main menu.  Sample pure water making sure no air bubbles are visible.  The measuring cell with pure water can be calibrated automatically with the key entries as follows:  Press [cal.] key for more than 2 seconds to show CALIB(Water) (inversed colo on the display) showing calibration with pure water in progress.

Screen Shot 2017-05-01 at 1.17.26 PM.png

After calibration is over the deviation from the theoretical value will be shown so that you can check if the calibration has been successfully completed.

Screen Shot 2017-05-01 at 1.17.33 PM.png

Note: if after attempting re-calibration of the measuring cell and results are still not within specifications it is possible the measuring cell itself is contaminated.  In this case ensure to carefully clean the measuring cell and then re-calibrate again.

Note 1: You can also calibrate with a standard liquid that has a known density.  Sometimes calibrating with a liquid that has a similar density to your test samples will help improve precision.

Note 2: You can also calibrate with air.


General maintenance - How to clean and dry the measuring cell and replace the built-in syringe

Step 1: Clean the measuring cell

You can thoroughly clean the measuring cell with just pure water.  You can also improve the cleaning of the measuring cell by using Ethyl Alcohol.  Ethyl Alcohol gets rid of dirt that cannot be removed with pure water and also reduces the amount of time to dry the measuring cell.

  • Estimate 5 to 10 minutes for the measuring cell to dry after cleaning with pure water
  • Estimate 3 to 5 minutes for the measuring cell to dry after cleaning with Ethyl Alcoho

Step 2: Purge air to dry the cell thoroughly and completely 

option using an air pump:

commercial pump to dry the cell.png

 

OR use the optional manual pump to dry the cell:

optional manual pump to dry the cell.png

When using the optional manual pump to dry the cell make sure to clean the cell first and then press the sample discharging lever all the way down, and push the sample intake lever upward to lock it.  With the adapter for the syringe attached connect the kit as illustrated above and feed air forcefully using the manual bulb.

How to replace the built-in syringe.Maitenance how to replace the built-in syringe.png

  • Press down the sample discharging lever all the way and remove the syringe cover by pulling it toward you as illustrated.
  • Turn the syringe 45degrees counter clockwise to release it from the o-ring.
  • Slightly pull the sample drain-out lever toward you to pull out the syringe from the o-ring.
  • Remove the syringe from the drain rack and replace it with a new one.
  • Pull down the drain rack and insert the o-ring  and turn it back clockwise until it stops.
  • Place the syringe cover back on the unit.

 

Data Processing and Storage

The maximum number of data which can be stored in the DA-130N memory is 1,100 samples.  Data can be set to be saved automatically or manually after each test.  You can recall stored measurement data on the DA-130N display again or output the data to a printer or PC.

Exporting data to a PC via Infrared:

Data export via infrared to PC.png

Exporting data to a PC via RS-232

Data export using RS-232 to PC.png

Sending data to a printer:

Exporting data to a printer via RS-232.png

Example printout of data:

Printout Sample for the DA-130N.png

We hope this information about this particula density meter is helpful.  If you need other capabilities beyond a traditional portable density meters refer to other bench top density meter models for increased accuracy. 

Continue Reading

Q&A: AT-710 Burette piston won't move

By Hank Levi on Tue, Jun 19, 2018 @ 03:36 PM

Sometimes pressing a button and hearing a beep just drives you crazy.  We know.  Below we received some video of a problem where the operator could not move the piston burette up or down on their automatic titrator.  We decided to replicate the problem and then show how to take corrective action.  We hope you find the video informative even though it is raw footage.  Send us your questions too.  Video, audio, pictures, etc.  We can use any format.

 
 

Continue Reading

What happened to Hydranal Karl Fischer Reagents?

By Hank Levi on Sun, Nov 05, 2017 @ 08:12 PM

There has been some confusion in the market place when it comes to purchasing Karl Fischer reagents and water standards.  Some of you who have traditionally ordered the Hydranal brand from Sigma Aldrich (and it's channel partners and dealers) are discovering now that the Karl Fischer reagents and waters standards are slightly different - If you order them from Sigma Aldrich.  The names on the bottles are kind of the same, but not exactly.

milliporesigmalogo.png

Some background - what happened to Sigma Aldrich

As many people know Sigma Aldrich for many years handled the Hydranal line of Karl Fischer Reagents and water standards.  Recently (within the past year and a half or so), a company called EMD who controls the other Karl Fisher reagent line called Aquastar purchased Sigma Aldrich.  As a result of this transaction Sigma Aldrich is now part of another company and is referred to as MilliporeSigma.The Sigma Alrdrich you used to know no longer provides the Hydranal brand but intstead now offers the Aquastar line of Karl Fischer Reagents and water standards.

What happened to the Hydranal brand of Karl Fischer reagents?

honeywelllogo.jpgA well-known company called Honeywell purchased and now controls the Hydranal line of Karl Fischer Reagents.  You can still order Hydranal brand coulometric Karl Fischer reagents and volumetric Karl Fischer reagents via Honeywell and it's channel partners and distributors.

What does this mean to you and how might this effect you?

As you can imagine this has triggered a lot of phone calls with questions from end-users to purchasing agents with questions like:

  • Are these reagents the same?
  • Can I use these reagents interchangeably?
  • What are the differences?
  • Hydranal vs. Aquastar?

Here's what we know

As a manufacturer and distributor of coulometric Karl Fischer titrators and volumetric Karl Fischer titrators for many years, we have worked with both the Aquastar and Hydranal brands extensively.  We are not here to tell you one is better than the other.  We can tell you that different model Karl Fischer titrators seem to work differently depending on the brand of Karl Fischer reagent used.  It might simply be an operators familiarity with working with one brand vs. the other or it might be because a specific application just works better with a certain Karl Fischer reagent.  

-While the design is that either of these brands should work we find subtle differences in chemistry-  

Are there any real key chemical differences between Hydranal and Aquastar?

To be fair we have not reached out to Aquastar for their perspective yet (we will - and update this post).  From the Hydranal technical center we have obtained some information about what they see as strengths in the Hydranal brand and some differences with the Aquastar brand.  Here are a few notable points:

1. Different performance.  Yes they do perform differently.

2. Different solvents are used.  Example:  Aquastar Combititrant is a copy of the old version of Hydranal Composite 5 where there was no 2-Methylimidazole.  Without 2-Methylimidazole, you can have reagent crystalization and stability issues.

3. Co-solvents are optimized in Hydranal.  Too much Chloroform can mess up the stoichiometry

4. Hydranal coulometric reagents are more unique

  • Hydranal has more buffering capacity
  • Larger volume of samples than Aquastar

5. Hydranal is very precise, convenient and consistent

As mentioned above we hope to get some additional information on the Aquastar line so we can share with you their strengths and differences.  In the meantime we hope this information has been helpful.

If you have any questions or would like to compare the reagents you currently use with the "other" brand just let us know.  We can provide a cross reference for all of the Karl Fischer reagents by brand and product.

Learn More

As always, we hope this information is helpful.

 


 



 

 

 

 

 

 

 

Continue Reading

Using the DA-130N portable density meter for the first time

By Hank Levi on Mon, May 15, 2017 @ 03:29 PM

This is a quick guide to getting started and running your first test.  We thought it would be helpful for those getting started and checking their first calibration before running tests with actual samples.  We will also continue to explore and share more information about calibration options, general maintenance, and data export methods using the DA-130N portable density meter in future posts.

First, lets review and identify the parts of the DA-130N Portable Density Meter:

Front view of the DA-130N.png

 

Side view of the DA-130N.png

 

Rear view of the DA-130N.png

Display Window.png

 

O.K.  Now let's get started and install three 'AAA' batteries...installing the batteries.png

...And then attach the sampling nozzle.  attaching the sample nozzle.png


A few words about precautions when taking test measurements.

measurement precautions.png

When measuring a sample make sure to hold the instrument so that the sampling nozzle is vertical to the ground.  When laying down the instrument between or after measurements make sure to drain the remaining sample from the built-in syring (the built-in syringe is located inside the meter right above the sampling nozzle).

 builtinsryring2.pngMaintenance - replacing the built-in syringe.png


Now let's run a preliminary test using water.  

Leave the temperature unit (Celsius), measurement unit (g/cm3) and mode (Field) as initial values. Sample pure water using the built-in syringe.  when using the built-in syringe to introduce the sample.png
 
  1. Make sure the sample discharging lever is pushed down to the bottom.
  2. If not, slowly push it down with your thumb.
  3. Dip the sampling nozzle in the sample liquid.
  4. Slowly pull the sampling lever with the forefinger. When the cell is filled with sample, release your finger.
 
 
 
 
After the measurement cell is filled with sample liquid make sure there are no air bubbles in the cell.  If no air bubbles are visible then let's proceed.
 
Example procedure for running first test.
screen view at current temp before stablized.png
The display changes as above and after confirming it is in the automatic stability sense mode. Press [Meas.] key.  When the displayed density is stabalized the value will automatically change reversed as below.  Read the data at this point as well as the temperature degree.
screen changes reverse when stabalized.png
Look up to the pure water density table (appendix 1 in the manual).  If the results agree within +-0.001g/cm3, you can proceed to making your sample measurements!
 
densityofpurewater.png
 
Note: If the results are not within the acceptable range then the measuring cell requires calibration.
 

Calibration of the measuring cell using pure water

calibrationofmesaruingcell.png

Set calibration mode to OFF.  Press the [esc] key 2 times to return to the main menu.  Sample pure water making sure no air bubbles are visible.  The measuring cell with pure water can be calibrated automatically with the key entries as follows:  Press [cal.] key for more than 2 seconds to show CALIB(Water) (inversed colo on the display) showing calibration with pure water in progress.

Screen Shot 2017-05-01 at 1.17.26 PM.png

After calibration is over the deviation from the theoretical value will be shown so that you can check if the calibration has been successfully completed.

Screen Shot 2017-05-01 at 1.17.33 PM.png

Note: if after attempting re-calibration of the measuring cell and results are still not within specifications it is possible the measuring cell itself is contaminated.  In this case ensure to carefully clean the measuring cell and then re-calibrate again.

Note 1: You can also calibrate with a standard liquid that has a known density.  Sometimes calibrating with a liquid that has a similar density to your test samples will help improve precision.

Note 2: You can also calibrate with air.


Some other useful things to know when working with different types of samples:

For more viscous samples over 2,000mPa.s it's a good idea to use the optional syringe adapter set. Almost any commerciall available syringe (plastic works great) will work.  You just need to order the female adapter to make it work (Adapter part number is 12-04428-02)

Sample introduction via Syringe Option.png

When working with samples under 2,000mPa.s of viscosity but where samples contain particles or grains that may crystallize when dry we suggest you use the supplied bellows pump (swap out the built-in syringe for this). 

Maitenance how to replace the built-in syringe.png

 

We hope this information has been helpful!

Get more DA-130N Portable Density Meter Information

Continue Reading

Regular Bostwick Consistometer vs. Long Bostwick Consistometer

By Hank Levi on Thu, Apr 27, 2017 @ 01:22 PM

Many of us have used the CSC Bostwick Bostwick Consistometer.pngConsistometer and are familiar with it's operation.  Pressing down the gate and loading the trigger is step one.  Pouring in your sample and scraping off the top to a clean and even surface is important to getting repeatable results.  With a stopwatch in one hand, "popping" the trigger and letting the sample flow out and down the trough comes next.  Some tests are designed to see how far a sample will flow in say, 10 seconds.  Another testing approach might be to time the movement of the sample until it reaches a pre-determined point (bostwick).  If you have ever noticed in the bottom of the tray there are lines with numbers ranging from 0 to 24 (you really can't see a number 24 because the tray stops exactly at what would be 24).  Over the years these lines with numbers have affectionatly become to be known as "bostwicks". 

Most recently we have had requests to extend the length of the Bostwick Consistometer to accommodate samples that require more time and distance.  Not every sample flows the same way so this seemed like a good idea.  So to meet these needs we have now just started to offer a longer version of the Bostwick Consistometer!  Don't worry we still have the regular length Bostwick Consistometer available.

Bostwick Consistometers.jpg

  • The long version of the Bostwick Consistometer (part# 24925-000L) now extends from 0 to 32.  
  • The regular length Bostwick Consistometer (part#  24925-000) has a range of 0 to 24.  

Consistometers

 

 

 

Continue Reading

Recent Posts