<img src="https://secure.leadforensics.com/124134.png" style="display:none;">

How an oil evaporator works with a Karl Fischer Titrator

By Hank Levi on Mon, Aug 26, 2019 @ 11:13 AM

Evaporators configured for use with Karl Fischer moisture testers can provide added benefit when testing for moisture in samples that are not easily solubilized in the titration cell.  In some cases even if it's possible to solubilize the sample in the titration cell you may find that it is better to use an evaporator to improve repeat testing by keeping the cell clean.  While traditonal Karl Fischer moistutre testing is performed using a direct injection method where a syringe and needle is used to introduce the liquid sample into the titration cell, the use of evaporators follow a different approach. 

Within the evaporator family there are SOLIDS EVAPORATORS that can range from 0 to 300 degree C as well as high heat solids evaporators that can range from 0 to 1,000 degree C. 

A typical OIL EVAPORATOR will have a range from 0 to 300 degree C. 

Solids evaporators will typically be used to measure moisture in these types of samples:

  • plastic pellets (pte, etc)
  • plastic parts (you can cut into smaller pieces with a pair of scissors)
  • paper material (transformers)
  • thick grease samples
  • thick petroleum based samples like heavy paints, etc
  • and the list goes on

Oil evaporators will generally be used when working with heavy crude oil samples with high turnover testing (keeping the cell clean).

In this video we will discuss and show how the oil evaporator works with a Karl Fischer Titrator.

 

Talking points include:

  • Karl Fischer Titrator
  • Oil Evaporator
  • Base Oil
  • Bubbler Tube
  • Nitrogen Gas Source
  • Regulator
  • Thermocouple
Continue Reading

What happened to Hydranal Karl Fischer Reagents?

By Hank Levi on Sun, Nov 05, 2017 @ 08:12 PM

There has been some confusion in the market place when it comes to purchasing Karl Fischer reagents and water standards.  Some of you who have traditionally ordered the Hydranal brand from Sigma Aldrich (and it's channel partners and dealers) are discovering now that the Karl Fischer reagents and waters standards are slightly different - If you order them from Sigma Aldrich.  The names on the bottles are kind of the same, but not exactly.

milliporesigmalogo.png

Some background - what happened to Sigma Aldrich

As many people know Sigma Aldrich for many years handled the Hydranal line of Karl Fischer Reagents and water standards.  Recently (within the past year and a half or so), a company called EMD who controls the other Karl Fisher reagent line called Aquastar purchased Sigma Aldrich.  As a result of this transaction Sigma Aldrich is now part of another company and is referred to as MilliporeSigma.The Sigma Alrdrich you used to know no longer provides the Hydranal brand but intstead now offers the Aquastar line of Karl Fischer Reagents and water standards.

What happened to the Hydranal brand of Karl Fischer reagents?

honeywelllogo.jpgA well-known company called Honeywell purchased and now controls the Hydranal line of Karl Fischer Reagents.  You can still order Hydranal brand coulometric Karl Fischer reagents and volumetric Karl Fischer reagents via Honeywell and it's channel partners and distributors.

What does this mean to you and how might this effect you?

As you can imagine this has triggered a lot of phone calls with questions from end-users to purchasing agents with questions like:

  • Are these reagents the same?
  • Can I use these reagents interchangeably?
  • What are the differences?
  • Hydranal vs. Aquastar?

Here's what we know

As a manufacturer and distributor of coulometric Karl Fischer titrators and volumetric Karl Fischer titrators for many years, we have worked with both the Aquastar and Hydranal brands extensively.  We are not here to tell you one is better than the other.  We can tell you that different model Karl Fischer titrators seem to work differently depending on the brand of Karl Fischer reagent used.  It might simply be an operators familiarity with working with one brand vs. the other or it might be because a specific application just works better with a certain Karl Fischer reagent.  

-While the design is that either of these brands should work we find subtle differences in chemistry-  

Are there any real key chemical differences between Hydranal and Aquastar?

To be fair we have not reached out to Aquastar for their perspective yet (we will - and update this post).  From the Hydranal technical center we have obtained some information about what they see as strengths in the Hydranal brand and some differences with the Aquastar brand.  Here are a few notable points:

1. Different performance.  Yes they do perform differently.

2. Different solvents are used.  Example:  Aquastar Combititrant is a copy of the old version of Hydranal Composite 5 where there was no 2-Methylimidazole.  Without 2-Methylimidazole, you can have reagent crystalization and stability issues.

3. Co-solvents are optimized in Hydranal.  Too much Chloroform can mess up the stoichiometry

4. Hydranal coulometric reagents are more unique

  • Hydranal has more buffering capacity
  • Larger volume of samples than Aquastar

5. Hydranal is very precise, convenient and consistent

As mentioned above we hope to get some additional information on the Aquastar line so we can share with you their strengths and differences.  In the meantime we hope this information has been helpful.

If you have any questions or would like to compare the reagents you currently use with the "other" brand just let us know.  We can provide a cross reference for all of the Karl Fischer reagents by brand and product.

Learn More

As always, we hope this information is helpful.

 


 



 

 

 

 

 

 

 

Continue Reading

Karl Fischer Over Titration and 7 things you should know about it

By Hank Levi on Wed, May 02, 2012 @ 06:30 PM

We have all seen it.  We’re running a test to see how much moisture is in our sample when inexplicably the liquid inside the Karl Fischer vessel starts to turn from a normal light-yellow color to a dark burnt-red looking color.  Sometimes the titrator screen will inform us of the problem with a digital readout stating the dreaded

OVER-TITRATION!” 

kfbeforestart resized 600describe the imagedescribe the imagedescribe the image

 

Sometimes the digital readout says nothing at all.  In either case the operator knows something has gone wrong because the Karl Fischer Titrator is no longer giving moisture results.  A panic to figure out the problem and get testing underway again becomes the immediate priority. 

But where do you start?  

As it turns out “over-titration” is probably one of the top 2 or 3 complaints or issues we hear about from operators.    So what is causing this problem to occur?  How can we determine the source of this problem, fix it, and more importantly how can we avoid it?

 
This is a critical question for operators and managers working in a production or QC environment who are concerned with keeping their Karl Fischer Titrator 100% “in-service”, day-in and day-out.   Having the ability to identify the problem correctly so appropriate measures can be taken quickly is very important.

 
So how do we approach the problem of “over-titration”?   By knowing the facts.  Having a clear understanding of the process can help operators correct the problem faster when time is of the essence.  

Important facts you should know about over-titration:  
  1. Over-titration is a state where there is more iodine present in the vessel than water (general definition).
  2. When over-titration occurs the vessel will become very dark as a result of the abundance of iodine present inside the vessel.
  3. The reagent inside the vessel should normally have a light-yellow color absent a very dark sample such as oil.
  4. The Karl Fischer Titrator always attempts to maintain an equilibrium where only enough iodine is introduced to counter and neutralize the water present inside the vessel.
  5. During a single titration test there should only be enough iodine introduced to counter and neutralize the amount of water present inside the titration vessel during that test – no more, no less.
  6. Any incident that interferes with the final amount of iodine introduced during the titration test can lead to dis-equilibrium and result in more iodine being introduced than necessary.
    Important facts you should know about Karl Fischer Titrator Glassware:  
  1. The Karl Fischer Vessel and Glassware is composed of the following
    1. Vessel (coulometric and volumetric)
    2. Generator Electrode (coulometric only) - The Generator Electrode is a precision electrode designed to deliver an electrical current inside the vessel to the reagent – causing the reagent to produce iodine
    3. Titration nozzle (volumetric only) - The titration nozzle delivers precise amounts of iodine (composite or titrant) via a burette driven mechanism using a piston
    4. Detector Electrode (coulometric and volumetric) - The detector electrode has a sole purpose and probably the most important role in continuously monitoring and determining the conductivity levels within the titration vessel.
  So what are the causes that can lead to over-titration? 

✓ A damaged Detector Electrode

✓ A "Tricked" or "Fooled" Detector Electrode (no joke)

Since coulometric and volumetric Karl Fischer Titrators handle the delivery of iodine differently it’s worth describing the two methods separately.  

A Word About Coulometric Karl Fischer Titration:

In a coulometric system the reagent is a complete system where it is designed to release iodine when the generator electrode delivers an electrical current to it.  So what causes the generator electrode to deliver too much current causing the over production of iodine?  Another way to say it is, “who or what” is telling the generator electrode to continue to generate a current when it’s not needed?  

   
The detector electrode!  So why would the detector electrode do this?   describe the image
Without getting into too much of the electronics the detector electrode is designed to “detect” conductivity in the vessel.  Depending on the amount of conductivity detected the detector electrode will send a message to the titrator telling it to continue producing a current - enough to release the appropriate amount of iodine to counter and neutralize the water present in the vessel.  As long as this process is working during a titration an eventual endpoint will be found and a result will be produced.  


So it’s really a problem of misinformation. If the Karl Fischer Titrator is not getting the right information from the detector electrode then over-titration is possible. 

The problems we see that can effect the proper functioning of the detector electrode include:  
  1. The electrode cable.  If the cable becomes cracked or breaks it can cause a situation where the message to the titrator is to continue producing a current – continually.  In this case the vessel will become very dark and in most cases the titrator will not even know it is in an over-titration state.  The generator electrode will simply continue to produce a current, turning the vessel very dark.  There will be no other warning or notice from the titrator for the operator to see.
  2. Cracked electrode.  Sometimes mishandling or even a stirrer bar bouncing around inside the vessel can cause a tiny crack near the bottom of the detector electrode that cannot be seen with the naked eye.  These cracks can allow small amounts of reagent inside the electrode enough where errors in detection will begin to occur.  What ensues is an unstable drift that jumps around giving the titrator a misreading. The jumping around and unstable drift may be picked up by the titrator and an error stating “OVER TITRATION” may be seen on the screen of the titrator.
  3. Cable connectors.  Sometimes the connectors on the titrator itself can become dirty, wet and corroded.  Also, some electrodes use multi-plug designs that can also become dirty, wet and corroded.   These connectors if not clean and dry can lead to a similar misreading similar to a cracked electrode where the drift begins to jump around and become unstable.  The titrator may also state that there is “OVER TITRATION” when this occurs.

Find more Coulometric Karl Fischer Titrator information 

A "Tricked" or "Fooled" Detector Electrode you say?describe the image

If it’s determined that the problem is not the detector electrode then we need to look at the stirring action inside the vessel.  If the iodine being released is not mixing well because the stirrer is off or set too low, then the detector electrode will not realize there is iodine already released inside the vessel.  This will cause the detector electrode to continue telling the titrator to produce more current via the generator electrode up to the point where the detector electrode senses a reduction in the conductivity level inside the vessel.  Conductivity only reduces as the iodine interacts with the water.  So it is important for the detector electrode to sense the true and most accurate “mix or state” of iodine and water during the titration process.  If it does not know the true state of the mix it will be fooled into telling the titrator to keep going – causing OVER TITRATION.        

A Word About Volumetric Karl Fischer Titration:

   
describe the imageIn a volumetric system the reagent setup is different where a composite or titrant is introduced via a burette piston through a titration nozzle.  The amount of composite or titrant delivered is based upon the commands of the titrator.  The command from the titrator to the burette and piston that push out the “iodine” through the titration nozzle is, yes, given by the detector electrode.  For the purposes of this discussion the difference between the coulometric and volumetric setup is that the delivery of iodine is different.   But the same problem can occur where the iodine does not mix well and therefore trick the detector electrode in to thinking there is not enough iodine present inside the vessel to counter and neutralize the water.  Since both coulometric and volumetric Karl Fischer Titrators use detector electrodes the problems mentioned earlier about the detector electrode will hold true with volumetric titrators also.  

Learn more about Volumetric Karl Fischer Titration 

 

 7 Thoughts (DOs and DON'Ts) on Problem Solving and Prevention:  

1.  Don’t abuse the detector electrode!  Be very careful with the detector electrode and do not handle it unnecessarily.  Small bumps (clanks) here and there can lead to a crack.   Do you really need to remove the detector thinking dragonelectrode from the vessel all the time?
2.  Don’t turn up the titrator’s stirrer speed to high.  This will only cause the stirrer bar to bounce around uncontrollably and possibly hit and damage the detector electrode (crack).
3.  Do inspect all connections and connectors on the detector electrode cable and Karl Fischer Titrator to ensure they are dry and clean.
4.  Do be careful with the detector electrode cable.  Try not to bend it unnecessarily.
5.  Do make sure there is enough stirring action inside the vessel to mix the iodine around effectively.  A small vortex should be visible.  But not too fast to cause the stir bar to bounce around.
6.  Do introduce some moisture - Sometimes when you are in an over-titration situation and the vessel is already very dark you can introduce a little moisture to bring the vessel back to equilibrium.  This sometimes works and immediately the vessel turns from a dark burnt-red color to a light-yellow.
7.  Do have a spare detector electrode on hand.  This little electrode seems to get over looked but plays a huge role inside the Karl Fischer Titrator vessel.

Created on 05/02/12 at 18:10:44

Continue Reading

What are Karl Fischer Water Standards and what do the numbers mean?

By Hank Levi on Thu, Feb 09, 2012 @ 01:44 PM

Most everyone working with Karl Fischer Titration at some point ends up wanting to check their instrument for accuracy and overall operational readiness.  Karl Fischer Water Standards were made to assist operators with making these operational checks.  Sometimes however we find there is some confusion about the choice of water standards available and what the numbers mean.

Learn more about Karl Fischer Titration

Karl Fischer Titration Water Standard Video from Scientificgear on Vimeo.

Hydranal water standards provide a few popular choices for both coulometric and volumetric Karl Fischer Titrators:

  • Hydranal 0.1 (100PPM ±10% error acceptance)
  • Hydranal 1.0 (1,000PPM ±3% error acceptance)
  • Hydranal 10.0 (10,000PPM)

So what do the numbers mean?  0.1, 1.0, 10.0?

Simply put, these numbers tell us the amount of moisture (H2O) that is present in 1 gram of the water standard.  The amount of moisture (H2O) is expressed as milligrams on the packaging.  Using the Hydranal 1.0 for example we say there is 1.0 milligram of moisture (H2O) in 1 gram of the water standard.  Did you know there are 1,000 micrograms per 1.0 milligram?  Yes there is.  So instead of thinking in terms of 1 milligram per 1 gram of water standard, think in terms of 1,000 micrograms per 1 gram of water standard.  Why?

Karl Fischer Titrators count moisture in micrograms!

Since Karl Fischer Titrators count moisture in micrograms it's easier to think about the water standards in terms of micrograms.  Why?

Find more Coulometric Karl Fischer Titrator information

We evaluate our water standard test in PPM

For the Hydyanal 1.0 we are looking for results within ±3% of 1,000PPM (970PPM to 1030PPM).  For the Hydranal 0.1 we are looking for results within ±10% of 100PPM (90PPM to 110PPM).

 Learn more about Volumetric Karl Fischer Titration

Don't forget this formula!:

PPM = WATER DETECTED IN MICROGRAMS/SAMPLE SIZE IN GRAMS

(For those who don't know PPM stands for Parts Per Million)

We hope this information has been helpful.

 Created on 02/09/12 at 13:36:32 

Continue Reading

Karl Fischer Titration and Water Standard Presentation

By Hank Levi on Tue, Jun 28, 2011 @ 10:43 AM

Kf waterstandard presentation resized 600In this presentation we discuss the basic Karl Fischer Water Standards and talk about some of their uses for both Coulometric and Volumetric Karl Fischer Titration.  We also describe some of the related problems that can be identified and overcome by using Karl Fischer Water Standards.

Learn more about Karl Fischer Titration

Find more Coulometric Karl Fischer Titrator information

Learn more about Volumetric Karl Fischer Titration

 

Created on 06/28/11 at 10:48:28
Continue Reading

Recent Posts