<img src="https://secure.leadforensics.com/124134.png" style="display:none;">

Surface Tension Measurement with the 70545000 Tensiometer

By Hank Levi on Wed, Mar 28, 2012 @ 06:27 PM

Have you ever wondered about how surface tension is measured?  Without getting into the details relating to things like, "What's a dyne per centimeter?", "Du Nouy Ring vs. Wilhelmy Plate", "the effects and force of gravity", "viscosity of liquid", or "temperature",  we decided to put together this short video tutorial to help explain the main components of a popular manual tensiometer (70545000) and how the instrument works.  We think seeing how a basic manual tensiometer measures surface tension is helpful in gaining a better understanding of the big picture.

CSC Tensiometer Model 70545 Interfacial from Scientificgear on Vimeo.

 

SOME QUICK FACTS ABOUT SURFACE TENSION AND HOW TENSIOMETERS HELP

APPLICATIONS OF SURFACE AND INTERFACIAL TENSIONS: Surface and Interfacial tension measurements are extremely important in the control and improvement of:

  • absorptiontensiometer
  • emulsification
  • osmotic pressure
  • cataphoresis
  • evaporation
  • solubility
  • condenstion
  • miscibility

Industries using dye solutions, producing detergents, clarifying liquids, or sparating ores by the flotation process can obtain greater uniformity and efficiency through close control of surface tension of the process liquid.  A close relationship exists between interfacial tensions of oil-liquid systems and the lubricating value of the oil.  Another major use is determining the sludging condition within a transformer, thereby eliminating costly repairs.

 

 7054570537DuNouy Rings

Created on 03/28/12 at 18:32:35

Click here to go to the platinum page

Continue Reading

Tensiometer Calibration

By Hank Levi on Thu, Mar 01, 2012 @ 03:54 PM

manual tensiometer resized 600Although the CSC Scientific Interfacial Tensiometer is fundamentally very straight forward, it is helpful to have a basic understanding of the operational features and components of the tensiometer.  There are dials, clamps, Du Nouy Rings, and Verniers to consider. 

In this video we show you how to check your calibration using a given weight. 

To conduct this calibration check we assume the tensiometer's tension wire is secure and the unit has the ability to provide a stable reading for your given samples.  Take a look at this short video and let us know if you have questions about the process.

 

Created on 03/01/12 at 15:59:28

Continue Reading

What are Karl Fischer Water Standards and what do the numbers mean?

By Hank Levi on Thu, Feb 09, 2012 @ 01:44 PM

Most everyone working with Karl Fischer Titration at some point ends up wanting to check their instrument for accuracy and overall operational readiness.  Karl Fischer Water Standards were made to assist operators with making these operational checks.  Sometimes however we find there is some confusion about the choice of water standards available and what the numbers mean.

Learn more about Karl Fischer Titration

Karl Fischer Titration Water Standard Video from Scientificgear on Vimeo.

Hydranal water standards provide a few popular choices for both coulometric and volumetric Karl Fischer Titrators:

  • Hydranal 0.1 (100PPM ±10% error acceptance)
  • Hydranal 1.0 (1,000PPM ±3% error acceptance)
  • Hydranal 10.0 (10,000PPM)

So what do the numbers mean?  0.1, 1.0, 10.0?

Simply put, these numbers tell us the amount of moisture (H2O) that is present in 1 gram of the water standard.  The amount of moisture (H2O) is expressed as milligrams on the packaging.  Using the Hydranal 1.0 for example we say there is 1.0 milligram of moisture (H2O) in 1 gram of the water standard.  Did you know there are 1,000 micrograms per 1.0 milligram?  Yes there is.  So instead of thinking in terms of 1 milligram per 1 gram of water standard, think in terms of 1,000 micrograms per 1 gram of water standard.  Why?

Karl Fischer Titrators count moisture in micrograms!

Since Karl Fischer Titrators count moisture in micrograms it's easier to think about the water standards in terms of micrograms.  Why?

Find more Coulometric Karl Fischer Titrator information

We evaluate our water standard test in PPM

For the Hydyanal 1.0 we are looking for results within ±3% of 1,000PPM (970PPM to 1030PPM).  For the Hydranal 0.1 we are looking for results within ±10% of 100PPM (90PPM to 110PPM).

 Learn more about Volumetric Karl Fischer Titration

Don't forget this formula!:

PPM = WATER DETECTED IN MICROGRAMS/SAMPLE SIZE IN GRAMS

(For those who don't know PPM stands for Parts Per Million)

We hope this information has been helpful.

 Created on 02/09/12 at 13:36:32 

Continue Reading

Karl Fischer Titrator not finding all of the moisture you expected?

By Mark Levi on Sun, Jan 08, 2012 @ 03:01 PM

Aquapal IIIIf your operating a dual-reagent Karl Fisher Titrator and your getting lower than expected moisture results you may want to check a few things.  First, make sure your analytical balance or specific gravity (if you use it) calculation is not the problem. Next, focus your attention on the reagents.

    Find out more about the Aquapal III

Reagents can cause problems if they are not being replaced often enough.

With a dual-reagent setup the operator places anolyte into the main vessel (75mL to 150mL of anolyte solution depending on the vessel size) and catholyte into the generator electrode (5mL of catholyte solution).

Now for some reason, most operators focus their attention primarily on the anolyte reagent and take great care in monitoring the condition and level of the anolyte. Unfortunately their is a tendency to forget about the catholyte. I say unfortunately because it is this oversight that can cause the problem.

Before I tell you the reason for the problem it’s helpful to know some useful information about the reagents ability to measure moisture. A typical vessel can hold 100mL of anolyte. 100mL of anolyte (Coulomat A, Coulomat AG, Coulomat AG-H) can measure 1,000,000 micro grams of water. Yes, 1 million micrograms of water!. Conversely, the pre-measured 5mL ampules of catholyte solution (Coulomat CG) that goes into the generator electrode has the ability to only measure 300,000 micro grams of water per 5mL charge. Do you see it?  Do you see the connection?

There is a 3 to 1 relationship of the catholyte to anolyte!

Yes, you should be replacing the catholyte 3 times per 1 charge of the vessel. Or put another way, change the catholyte 3 times as often as you change the anolyte.

Find more Coulometric Karl Fischer Titrator information


Now, back to the problem and the answer. If your not replacing the catholyte often enough, the catholyte will actually begin to convert and form a salt by-product. This “salt by-product” can then form and become deposited down around the frit at the bottom of the generator electrode (AKA inner buret) and clog the receptors. When this happens the generator electrode does not work as effectively and can contribute to low recovery on expected moisture levels.

What's the fix?

  1. Make sure to change the catholyte more often as required.
  2. Soak your generator electrode in methanol or even a light acid over night to clean out some of those salty deposits. That should help.

 

 

(Note: Coulomat AK anolyte and Coulomat CG-K catholyte are used in combination for samples with Keytones and have a 1 to 1 relationship and can measure 100,000 micrograms of water. Also, the popular Coulomat Oil anolyte has a smaller amount of moisture measuring capability as compared with the other mentioned anolytes above and has a capacity to measure 300,000 micrograms of moisture. eg. If your using Coulomat oil anolyte and Coulomat CG both have the capacity to measure 300,000 micro grams of water and have a 1 to 1 relationship.)

Hope this helps.

Continue Reading

How to use a titrator to measure % sodium chloride in food products

By Hank Levi on Sun, Dec 18, 2011 @ 03:57 PM

Automatic Titrator

Titration

So you need to measure the amount of sodium chloride in your food products. While we have written about this topic previously in other posts and addressed some of the approaches used to test for % sodium chloride (including the use of hand-held salt meters) we have found that it is a more common practice to use an automatic titrator to accomplish this task.  In fact we think it is the preferred instrument and method of choice.  To be sure there are pros and cons to using different methods but we still find that titration is accepted as the primary method for getting the most accurate results.

 

How it's used

Although salt meters using the conductive method are faster (3 seconds vs. 2 to 3 mintues) and can be employed quickly in a production line process, titrators can also be implemented in the same testing environment with modest effort.  Additionally and regardless of how the tests were performed on the production line, titrators are generally put to work in the Quality Control/Quality Assurance Lab as a final check against periodic production line testing.

Supporting the use of titration as an accepted method includes some well known documented techniques including Mohr's and Volhard's methods making titration a recognized and trusted approach.

 

What's next...

Once you have made the decsion to use titration as the testing method it's just a matter of knowing:

  • What items you need

  • How to prep your sample

  • How to setup the titrator

Luckily we have already thought about this and put together a list of 8 items your going to need.  We also created an application-note providing step-by-step instructions for you to follow to conduct a titration.

                                 

                                         Created on 12/18/11 at 12:16:27  

 

                                           Created on 12/18/11 at 13:00:41

Continue Reading

How to test for Salt during food production

By Hank Levi on Mon, Oct 31, 2011 @ 12:53 PM

SaltMany companies produce the foods we eat.  Do you ever wonder why or how they test for salt during the production process?

Examples by Manufacturing Type

Frozen Vegetable Processor

The salt content of the blanching water is important for maintaining the bright colors of vegetables

A Condiment Manufacturer

Testing Sauces and dressings

A Cheese Maker

Measure the salinity of saltwater that the cheese is soaked in

A Potato Chips Manufacturer

Checking for salt sprinkled on fried potato slices

A fresh Cut Fruit Processor

Use a 2% saline solution with a small amount of ascorbic acid to prevent discoloration of fruits

A Deli Food Supplier

Measure foods with a salt meter vs. by taste

A Canned Food Manufacturing Plant

Measure the brine for canned tuna

A Pickles Manufacturer

Measure the salinity of the brine for salt-packed products

A Cold Cut Meat Manufacturer

Measure salt concentration of ham and deli slices

A Baker

Measure and monitor the salinity of bread dough to around 1%-2%

 

 

 

Salt which is made up of 40% sodium and 60% Chloride is an important ingredient found in food.  While salt can make food taste better, control color, and maintain food texture, it is also considered a health-risk factor (mostly due to the sodium).  Measuring and controlling the levels of salt between the extremes is a constant battle.  Producers of processed foods generally have the biggest need for identifying and controlling salt levels to address not only the taste, color, and texture of foods but also to address some of the healthier eating lifestyles more and more consumers are demanding.

For these reasons it is paramount that salt is measured accurately.  So how do we do that?

Food comes in a variety of forms.  Solid, Liquids, pastes, creams, pieces, chunks, wafers, crackers, gooey, sauces, liquids with chunks in them...let's see what else..Anyway, you get the idea.  There are a lot of ways food can be produced and consumed!

So what device or devices can we use to measure the salt found in these numerous forms of processed foods?

Well, there are a number of "salt meters" out there that can measure salt.  However, not all salt meters can measure the particular salt you are looking for in the same way.  In fact some "salt meters" can only measure salt under certain conditions and or in certain substances like water or sea water.  For this reason it is important to first consider what your going to be testing.  For example, If your food sample includes "food stuff particles" that you can grind into a paste form, then you can probably use a salt meter that utilizes the conductivity method.  On the other hand if you have a brine that you immerse food into and your only concerned with the liquid then perhaps a different salt meter will work.  

The point is this.  The form of the food at the instant you are going to perform the test is key.  Many types of foods can be formed into pastes and diluted with water.  If the food you need to test is like this then a simple salt meter utilizing the conductivity method may be able to perform the test to your satisfaction.  I say may because % salt levels and other accuracy factors may require that you use an entirely different method of titration known as silver nitrate titration instead.

Salt Meter vs. Titration?

describe the image               Titrator

A brief explanation and description of the two measurement approaches:

The Mohr method, also known as a silver nitrate titration method, utilizes the characteristics of silver nitrate that reacts with chloride ions to measure the salinity %. 

Created on 10/31/11 at 10:37:41

Conversley, some of the more popular salt meters emloy the electric conductivity method.  Both methods measure the salinity but operate on different measurement principles.  However, by creating a conversion table between the two testing methods, correlation between the set of results can be seen.

Created on 10/31/11 at 10:41:32  

Aside from the measurement capabilities of each approach there are pros and cons to each.

 
 Pro's and Con's

 

Salt Meter

Titration

 Measurement Range

Less..maybe

More

 Accuracy

Less

 More

 Ease of Use

More

 Less

 Time to test

Less

 More

 Cost

 Less

 More

 

 

 

 

 

 

 

 

 

 

 

 

 

While each method has benefits we have recently found through some informal surveying that some food processors are choosing to use both methods.  These companies are finding that it is easier to use the hand held devices and perform quick spot checks on the production line.  If any problems are identified on the production line then further verification and testing can be performed using the titration approach.  Some think using this collaborative approach is ideal.smiley2

 

ALSO READ OUR MOST RECENT UPDATES TO THIS BLOG POST : Salt related posts

Continue Reading

How Much Does a Tensiometer Cost?

By Hank Levi on Mon, Sep 26, 2011 @ 03:37 PM

Tensiometers

 

Tensiometers are instruments used for conducting surface analysis on liquid substances.  Typical applications Tensiometers perform include measuring surface tension, interfacial tension as well as liquid density and Lamella Length on some Tensiometer models.  Some models can also perform other tasks including powder wettability and dynamic contact angle of a solid substrate.  Depending on the types of information the operator is seeking to find one model may be more appropriate than the other.

 

To help prospective users evaluate and compare the different types of models available in the market we have prepared a reference document we call the:

 

"Tensiometer Selection Matrix"

 

This matrix is not necessarily brand specific as it was designed to help those seeking to compare capabilities and prices among popular manual Tensiometer models vs. popular Automatic or "digital" Tensiometer models.

 

We hope you find the Tensiometer Selection Matrix helpful in your search and evaluation of Tensiometers.

 Created on 09/22/11 at 12:43:16

Click here to go to the platinum page

Continue Reading

Can a Karl Fischer Titrator measure moisture in a solid sample?

By Hank Levi on Thu, Sep 15, 2011 @ 10:33 AM

YES IT CAN!Karl Fischer Titrator

You can measure moisture in solid samples including plastics, powders, ores, gooey substances that are thick and viscous, greases, and many more.  The key is sample preparation to ensure that a uniform material will be tested.  Once those details are worked out the pattern for testing is the same every time. 

You hear a lot about people running traditional Karl Fischer titration using direct injection with a syringe and needle. That’s pretty easy. 

  Learn more about the Karl Fischer 710 Series

So how do you test for moisture in solids?

For more awkward samples like a solid or solid-like substance we can evaluate the moisture using a Karl Fischer Titrator with an Evaporator Oven.ADP611 Solids Evaporator for Karl Fischer Titration

Believe it or not that’s pretty easy too. I guess that’s why we wrote this post. We wanted to let readers know that the process for running a Karl Fischer moisture test using an evaporator oven is not that difficult.  As mentioned already the most difficult part is probably working with your sample. To help show how the process works we created this short 7 minute video detailing the steps along the way. Please make note that the instruments used for this demonstration are the Karl Fischer Titrator (MKC-610DT) and the Evaporator Oven (ADP-611).

Hope you enjoy.

In the video below we show the 600 series Karl Fischer Titrator.  Today we have additional models like the MKC-710 series that work with the ADP-611 solids evaporator.

Find more Coulometric Karl Fischer Titrator information

 

Continue Reading

Where can I get an electrode repaired? - Karl Fischer

By Hank Levi on Mon, Aug 08, 2011 @ 11:00 PM

We work with numerous titrator models and Electrode Repairencounter many of the day-to-day problems associated with broken electrodes.  In many instances some of the electrodes are destroyed beyond repair but in other circumstances we find that some are in fact capable of being repaired. Learn more about Karl Fischer Titration

Most of our success with repairing or refurbishing electrodes is with Karl Fischer Generator Electrodes (also known as Inner Burettes). 

However, we do try to evaluate and determine whether other types of electrodes can be repaired also.  Generally we will ask for a photo or other description of the damaged electrode to determine if a repair is possible.  An example of how we examine a typical Karl Fischer Generator Electrode can be viewed in the following short video.  Take a look and let us know if we can help you.

Created on 08/08/11 at 22:20:44

Continue Reading

WBGT and Washington State Safety

By Hank Levi on Tue, Aug 02, 2011 @ 02:40 PM

washingtonstate resized 600On July 5th, 2008, a workplace rule designed to protect workers from outdoor heat exposure took effect in Washington State. This rule was passed on June 4 after six public hearings were conducted on heat stress and its causes. The hearings confirmed what officials already knew: working outside in hot weather is a health hazard.  The three requirements for employers with employees who work outside are to:

·  Train employees and supervisors to recognize heat-related illness and what to do if someone has symptoms.

·  On days when temperatures require preventive measures, increase the volume of water available to employees.

·  Have the ability to appropriately respond to any employee with symptoms of illness.

 

It's now 3 years later...would a handheld WBGT Meter be a helpful tool?...

 

The Wet Bulb Globe Temperature (WBGT Handheld meter) is a tool perfectly suited to helping Washington State employers comply with this new law. This hand-held tool is used to estimate the effect of temperature, humidity, and solar radiation on humans and determine appropriate exposure levels to high temperatures. A WBGT index is commonly used as a guide for environmental heat stress to prevent heat stroke during physical exercise or while at work. Based on the index shown, employers can estimate the probability that a heat-related illness with occur and provide the appropriate amount of water available for the current weather conditions. See a video demonstrating the use of the WBGT103 below.

 

For more information on the new Washington State law, go to: http://www.lni.wa.gov/safety/topics/atoz/heatstress/default.asp

Continue Reading

Recent Posts